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Abstract

We discuss particletracking simulationsin astoragering
with lithium lens inserts designed for the six-dimensional
phase space cooling of muons by the ionization cool-
ing. The ring design contains one or more lithium lens
absorbers for transverse cooling that transmit the beam
with very small beta-function values, in addition to liquid-
hydrogen wedge-shaped absorbers in dispersive locations
for longitudinal cooling. Such a ring could comprise the
final component of a cooling system for use in a muon col-
lider. The beam matching between dipole-quadrupole lat-
tices and the lithium lenses is of particular interest.

OVERVIEW

The ionization cooling is one of the most promising
method to reduce the 6 dimensional phase space of muon
beam, where both transverse and longitudinal momentaare
reduced due to the energy loss in absorbers, and only lon-
gitudina components of the muon momenta are restored
through the accelerating fields of RF cavities. The multi-
ple Coulomb scattering contributes to heat the transverse
phase space. And the dE/dx straggling through absorbers
contributes to heat the longitudinal phase space. Wedge
absorbers in dispersive region in bending cells perform
the emittance exchange between the longitudinal emittance
and the horizontal emittance. [1]

Lithium lens is an active focusing element with energy
absorber function at the same time. With g at 1 cm with
high current density Lithium lenses, the equilibrium nor-
malized transverse emittance can be at around 100 mm -
mrad, which is necessary for a ™~ collider. [2]

In the muon cooling ring with Lithium lenses, Lithium
lenses with the 3 function as low as 1.0 cm is placed in
a straight section with matching solenoid magnets. Figure
1 shows a schematic view of a muon cooling ring with a
Lithiumlens. Circumferenceis 37.5 m, the straight section
is 5.9 m long each, and the radius of the bending sectionis
46m.

MUON COOLING IN STRAIGHT
CHANNELSWITH LITHIUM LENSES

We designed muon cooling rings with a Lithium lens
which is made of 2 matching higher 3 Lithium lenses sand-
wiching the central lower 3 Lithium lens. 3 at theinner 22
cmlong Lithiumlensis1.0cm. The matching Lithium rod
with the length of 6.3 cm each, which sandwich the central
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Figure 1: A schematic diagram of amuon cooling ring with
Lithium lensesin straight sections.

Lithium lens, hasan equilibrium g at 4.0 cm, which swings
the 5 function from the 3 at 16 cm at the outer end to the
0 a 1 cm at the inner end of the matching Lithium rod.
The solenoids has 6 Teda B, field where the B, direction
of solenoids is opposite to each other, and each solenoid
is 1.3 m long Figure 2 shows a schematic diagram of a
Lithiumlensand straight section whichis made of 2 match-
ing solenoids and a set of Lithium lenses. Figure 3 shows
the 8 as a function of z in the Lithium lens and matching
cells with solenoids.

In order to study the muon beam dynamics through a
Lithium lens and matching solenoid lattices which sand-
wich the Lithium lens, we performed tracking simulation
with ICOOL tracking code. [3] Originad model was de-
signed by using the SYNCH [4] which generates the input
date for the tracking code ICOOL.
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Figure 2: A schematic diagram of a Lithium lens(left) and
straight section(right).

Figure 4 shows the development of the normalized trans-
verse emittance as a function of z through 33 sets of 5.9 m
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Figure3: g asafunctionof sinthe Lithium lensand match-
ing cells with solenoids.
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Figure 4: Normalized transverse emittance as a function of
Z through 33 sets of straight sections.

long straight channel. In this simulation, the loss of muon
p. due to the dE/dx energy loss through the Lithium lens
is recovered through a thin RF cavity by adding averagep .
kick. The equilibrium normalized transverse emittance is
around 0.3 mm - rad. Figure 5 and 6 show the develop-
ment of the normalized longitudina emittance, Ap/p and
Az asafunction of z, and the transmission as a function of
z, respectively.
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Figure 5: Normalized longitudinal emittance, Ap/p and
Az asafunction of z through 33 sets of straight sections.

MUON COOLING IN A COOLING RING
WITH LITHIUM LENSES

We designed a 45 degree bending cell by using two
sets of zero-gradient dipole magnets with edge focusing.
Wedge absorbers of liq. Ho are placed in dispersive re-
gionsin the bending cells. RF cavities are placed wherever
the space is available.

Figure 7 shows 3 vs. zand D vs. z in amuon cooling
ring with Lithium lenses in straight sections. The 3 vs. z
and D vs. zin a45 degree bending cell is shown in Figure
8 We placed 1.7 cm long liq.H> wedge absorbers at the
center of dispersiveregionsin the bending cells.
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Figure 7: 8 vs. zand D vs. z in amuon cooling ring with
Lithium lensesin straight sections
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Figure8: 5 vs. zand D vs. zin a45 degree bending cell

Table 1 lists parameters of the muon cooling ring with
two Lithium lenses in straight channels.

Table 1: Parameters of a muon cooling ring

muon momentum 250 MeV/c
Circumference 37.5m

straight section length 59m(x 2)
Structure of half cell 2 dipoles with edges

number of bending cells 8

bend cell length 3.6m
Transmission length of Lithium lens 345cm(x 2)
~ lowest 3 inLithiumlens 1.0cm
energy loss 35 MeV/turn
. catt + stragg dipole bend angles 44.2,-21.7 degree
- dipole edge angles 30/-3, -11/-11 degree
ey dipole magnetic field 6.5,-3.2teda
Cell tunes bend cell 0.72/0.70
Cdll tunes straight cell 4.0

Figure 6: Muon transmission as a function of z through 33

sets of straight sections.




Figure 9 showsthe devel opment of the normalized trans-
verse emittance as a function of z through 8 turns of the
muon cooling ring in Figure 1. channel. In this simulation,
the loss of muon p, due to the dE/dx energy loss through
the Lithium lens or Lig. H, wedge absorbers is recovered
through a thin RF cavity by adding average p . kick. The
figure indicates the transverse cooling in the muon cooling
ring with Lithium lenses. Figure 10 and 11 show the de-
velopment of the normalized longitudinal emittance, Ap/p
and Az as afunction of z, and the transmission as a func-
tion of z, respectively.
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Figure 9: Normalized transverse emittance as a function of
Z through 8 turns of a muon cooling ring.
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Figure 10: Normalized longitudina emittance, Ap/p and
Az as afunction of z through 8 turns of a muon cooling
ring.
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Figure 11: Muon transmission as a function of z through 8
turns of a muon cooling ring.

CONCLUSION

We designed arace track muon cooling ring with 35 cm
long Lithium lenses in straight channels with G at 1 cm.
Bending cells have zero-gradient dipole magnets with edge
focusing, and wedge absorbersin dispersiveregions. Study
isin progress to obtain the 6 dimensional muon cooling in
this cooling ring.
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